Change in Skew Distance Energy due to edge deletion

A. Wilson Baskar¹, M.Dhanasekaran²

Department of Mathematics¹ Saraswathi Narayanan College Madurai 625 022, Tamilnadu, India. E-mail: arwilvic@yahoo.com . Department of Mathematics² N.M.S.S. Vellaichamy Nadar College (Autonomous) Madurai 625019, Tamilnadu, India . E-mail: vimudhan@gmail.com

Abstract-The skew distance energy of a directed graph G^{ϕ} is the sum of the absolute values of all skew distance eigen values of the skew distance matrix of G^{ϕ} . In this paper we present how the skew distance energy of G^{ϕ} changes when edges are deleted. Examples show that all cases are possible : increased, decreased, unchanged. Our aim is to find possible graph theoretical descriptions and to provide an infinite family of graphs for each case.

Keywords-Energy of a graph; distance energy; oriented graphs; Skew energy; Skew distance energy; Change in Skew Distance Energy.

1. INTRODUCTION

Let G(V, E) be a finite simple connected graph with n vertices and m edges. Let G^{ϕ} be a directed graph with an orientation ϕ . A subgraph H of G is an induced subgraph of G if H contains all edges of G that join two vertices of H. The complement of H in G is denoted as $G \setminus H$ and is obtained from G by deleting all vertices of G an induced subgraph H and all edges incident with H. Moreover when no edge of G join H and its complement $G \setminus H$, we write $G = H \bigoplus (G \setminus H)$. Let λ_i , i = 1, 2, ..., n be the skew distance eigen values of the skew distance matrix of a directed graph G^{ϕ} . The skew distance energy of G^{ϕ} is denoted as $E_{SD}(G^{\phi})$ and is defined as

$$E_{SD}(G^{\phi}) = \sum_{i=1}^{n} |\lambda_i|(5)|$$

The singular values of $A \in M_{n \times m}(C)$ are the square roots of the eigen values of $A\overline{A}^T$ which are denoted by $S_1(A) \ge S_2(A) \ge \ldots \ge S_n(A) \ge 0$.

Nikiforov [3] defined the energy of any $A \in M_{n \times m}(C)$ as $\sum_{i=1}^{n} S_i(A)$ which coincides with the definition of energy $\sum_{i=1}^{n} |\lambda_i(A)|$ if and only if A is a normal matrix (see section 4 in [4]). As the skew distance matrix of G^{ϕ} is real skew symmetric and the real skew symmetric matrices are normal $(A\bar{A}^T = \bar{A}^T A)$, the skew distance matrix of G^{ϕ} is normal. Therefore $\sum_{i=1}^{n} S_i(A) = \sum_{i=1}^{n} |\lambda_i(A)|$, A is the skew distance matrix of G^{ϕ} .

In Section 2, we prove a singular value inequality for complementary submatrices and characterize the equality case. Then this inequality is applied in section 3 to obtain results in skew distance energy change when a cutset is deleted. Section 4 presents several infinite families of digraphs, each having an interesting skew distance energy property when an edge is deleted.

2. A SINGULAR VALUE INEQUALITY

Lemma 2.1 [1]Let C be a complex $m \times n$ matrix. Then $|\sum_{i=1}^{n} |\lambda_i(C)| \leq \sum_{i=1}^{n} S_i(C)$. Equality holds iff there exists a real scalar θ such that $e^{i\theta}C$ is positive and semi-definite.

Theorem 2.2 [1]For a partitioned matrix $C = \begin{bmatrix} A & X \\ Y & B \end{bmatrix}$, where both A and B are square matrices, we have

$$\sum_{j} S_{j}(A) + \sum_{j} S_{j}(B) \leq \sum_{j} S_{j}(C).$$

Equality holds if and only if there exists unitary matrices U and V such that $\begin{bmatrix} UA & UX \\ VY & VB \end{bmatrix}$ is positive semi-definite.

Theorem 2.3 For a partitioned skew distance matrix of G^{ϕ} , $C = \begin{bmatrix} A & X \\ Y & B \end{bmatrix}$, where both A and B are square matrices and $Y = -X^T$, we have

 $\sum_{i} |\lambda_{i}(A)| + \sum_{i} |\lambda_{i}(B)| \leq \sum_{i} |\lambda_{i}(C)|.$

Equality holds if and only if there exists unitary matrices U and V such that $\begin{bmatrix} UA & UX \\ VY & VB \end{bmatrix}$ is positive semi-definite.

Proof. As the skew distance matrix of G^{ϕ} is real skew symmetric and the real skew symmetric matrices are normal, *C*- the skew distance matrix of G^{ϕ} is normal $(C\bar{C}^T = \bar{C}^T C)$. Therefore,

$$\sum_{i=1}^{n} S_i(\mathcal{C}) = \sum_{i=1}^{n} |\lambda_i(\mathcal{C})|$$

C is the skew distance matrix of G^{ϕ} . By theorem 2.2 [1],

$$\sum_{i} S_i(A) + \sum_{i} S_i(B) \le \sum_{i} S_i(C).$$

Therefore, $\sum_i |\lambda_i(A)| + \sum_i |\lambda_i(B)| \le \sum_i |\lambda_i(C)|$, which proves the inequality. Moreover, equality holds if and only if

$$traceC' = \sum_{i=1}^{n} S_i(C') = \sum_{i=1}^{n} S_i(C)$$

where C' =

 $\begin{bmatrix} U & 0 \\ 0 & V \end{bmatrix} C;$ UandVareunitarymatricessuchthatUAandVBarepo sitivesemi-definite, if and only if there exists θ such that $e^{i\theta}C'$ is positive semi-definite, by lemma 2.1 [1]. Since traceC' is non negative, $e^{i\theta} = 1$, (i.e) C' is positive semi-definite. Hence equality holds if and only if there exist unitary matrices U and V such that $\begin{bmatrix} UA & UX \\ -VX^T & VB \end{bmatrix}$ is positive semi-definite.

Corollary 2.4 [1]For a partitioned matrix $C = \begin{bmatrix} A & X \\ Y & B \end{bmatrix}$, where A and B are square matrices and $Y = -X^T$, we have $\sum_i S_i(A) \leq \sum_i S_i(C)$. Equality holds if and only if X, Y and B are all zero matrices.

Corollary 2.5 For a partitioned skew distance matrix of G^{ϕ} , $C = \begin{bmatrix} A & X \\ Y & B \end{bmatrix}$, where A and B are square matrices and $Y = -X^T$, we have $\sum_i |\lambda_i(A)| \le \sum_i |\lambda_i(C)|$. Equality holds if and only if X, Y and B are all zero matrices.

Proof. From theorem 2.2 [1],

 $\sum_{i} S_{i}(A) + \sum_{i} S_{i}(B) \leq \sum_{i} S_{i}(C).$ (i.e) $\sum_{i} S_{i}(A) \leq \sum_{i} S_{i}(A) + \sum_{i} S_{i}(B) \leq \sum_{i} S_{i}(C)$ (i.e) $\sum_{i} S_{i}(A) \leq \sum_{i} S_{i}(C).$ Therefore $\sum_{i} |\lambda_{i}(A)| \leq \sum_{i} |\lambda_{i}(C)|.$ Assume that *X*, *Y* and *B* are all zero matrices. Then *C* =

Assume that X, Y and B are all zero matrices. Then $C = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}$.

Clearly, $\sum_i S_i(C) = \sum_i S_i(A)$. i.e. $\sum_i |\lambda_i(C)| = \sum_i |\lambda_i(A)|$. Conversely, let us assume that $\sum_i |\lambda_i(A)| = \sum_i |\lambda_i(C)|$. Then $\sum_i S_i(A) = \sum_i S_i(C)$. As

$$\sum_{i}^{\Delta i} S_{i}(A) = \sum_{i}^{\Delta i} S_{i}(A) + \sum_{i}^{\Delta i} S_{i}(B) = \sum_{i}^{\Delta i} S_{i}(C),$$

 $\sum_{i} S_{i}(B) = 0 \text{ and so } B = 0 \quad (zeromatrix).$ Moreover the equality $\sum_{i} S_{i}(A) + \sum_{i} S_{i}(B) = \sum_{i} S_{i}(C)$ implies that there exist unitary matrices U and V such that $\begin{bmatrix} UA & UX \\ VY & VB \end{bmatrix} = \begin{bmatrix} UA & UX \\ VY & 0 \end{bmatrix}$ is positive semi-definite where $Y = -X^{T}$. Consequently, UX = 0 and UY = 0 [[6], section 7.1, 7.1.P2], so X = 0 and Y = 0.

3. 3.EDGE SET DELETION

Theorem 3.1 [1]Let G' be an induced subgraph of a simple graph G. Then the energy of $\varepsilon(G') \le \varepsilon(G)$ -the energy of G and equality holds if and only if E(G') = E(G) where E(G) represents the edge set of G.

Theorem 3.2 Let H^{ϕ} be an induced subgraph of a directed graph G^{ϕ} . Then $E_{SD}(H^{\phi}) \leq E_{SD}(G^{\phi})$ and equality holds if and only if Edge set of H^{ϕ} =Edge set of G^{ϕ} .

Proof. The skew distance matrix of G^{ϕ} is $SD(G^{\phi}) = \begin{bmatrix} SD(H^{\phi}) & X \\ -X^T & SD(G^{\phi} \setminus H^{\phi}) \end{bmatrix}$ where the skew distance matrix X represents the edges that connect $G^{\phi} \setminus H^{\phi}$ and H^{ϕ} . By corollary 2.5, $E_{SD}(H^{\phi}) \leq E_{SD}(G^{\phi})$. For the equality case, suppose the edge set of H^{ϕ} = the edge set of H^{\phi} = the edge set of H^{\phi} = the edge set of H^{ϕ} = th

set of G^{ϕ} , then $SD(G^{\phi}) = \begin{bmatrix} SD(H^{\phi}) & 0\\ 0 & 0 \end{bmatrix}$. Therefore $E_{SD}(G^{\phi}) = E_{SD}(H^{\phi})$. Conversely, suppose that $E_{SD}(G^{\phi}) = E_{SD}(H^{\phi})$, then $\sum_{n=1}^{n} \sum_{j=1}^{n} \sum_{j=$

$$\sum_{i=1}^{\infty} |\lambda_i(SD(G^{\phi}))| = \sum_{i=1}^{\infty} |\lambda_i(SD(H^{\phi}))|.$$

By corollary 2.5, X and $SD(G^{\phi} \setminus H^{\phi})$ are zero matrices. Thus the edge set of H^{ϕ} = the edge set of G^{ϕ} .

Corollary 3.3 [2]For any simple graph G with atleast one edge, $DE(G) \ge 2$

Corollary 3.4 For any simple graph G with atleast one edge and with orientation ϕ , $E_{SD}(G^{\phi}) \ge 2$.

Proof.Let $H^{\phi}: uv = k_2^{\phi}$ be an edge of G^{ϕ} . Then by theorem 3.2, $E_{SD}(H^{\phi}) \leq E_{SD}(G^{\phi})$. Since $E_{SD}(H^{\phi}) = 2$, $E_{SD}(G^{\phi}) \geq 2$.

Definition 3.5 If E is a set of edges of G such that $G \setminus E$ is the union of two complementary induced subgraph, then E is called a cutset of G.

Theorem 3.6 [2] If E is a cutset of a simple graph G, then $DE(G \setminus E) \le DE(G)$.

Theorem 3.7 If *E* is a cutset of a digraph G^{ϕ} , then $E_{SD}(G^{\phi} \setminus E) \leq E_{SD}(G^{\phi})$.

Proof. As *E* is a cutset of a digraph G^{ϕ} , $(G^{\phi} \setminus E) = H^{\phi} \bigoplus K^{\phi}$, where H^{ϕ} and K^{ϕ} are two complementary induced subgraph of G^{ϕ} . Then

$$SD(G^{\phi}) = \begin{vmatrix} SD(H^{\phi}) & X \\ -X^T & SD(K^{\phi}) \end{vmatrix}$$

where the skew distance matrix X represents the edges that connect H^{ϕ} and G^{ϕ} . Therefore by theorem 2.3,

 $\frac{\sum_{i} |\lambda_{i}(SD(H^{\phi}))| + \sum_{i} |\lambda_{i}(SD(K^{\phi}))|}{\sum_{i} |\lambda_{i}(SD(G^{\phi}))|} \le$

Since $(G \setminus E)^{\phi}$ is the union of two complementary induced subgraphs H^{ϕ} and K^{ϕ} ,

$$E_{SD}[(G^{\phi} \backslash E)] = E_{SD}(H^{\phi}) + E_{SD}(K^{\phi}).$$

Therefore,

$$E_{SD}\left[(G^{\phi} \setminus E)\right] \le E_{SD}(G^{\phi})$$

Theorem 3.8 If $\{e\}$ is a bridge in a simple digraph G^{ϕ} , then $E_{SD}(G^{\phi} \setminus \{e\}) \leq E_{SD}(G^{\phi})$.

Proof.Take $E = \{e\}$ in theorem 3.7.

Corollary 3.9 Let e be an edge of an oriented tree T^{ϕ} . Then $E_{SD}(T^{\phi} \setminus \{e\}) < E_{SD}(T^{\phi})$

Example 3.10 Let K_n^{ψ} be the oriented complete graph on n vertices with the orientations of all the arcs go from low labels to high labels. Then the skew distance energy of K_n^{ϕ}

is

$$\sum\nolimits_{k=1}^{n} cot(2k-1)\frac{\pi}{2n}$$

$$\begin{aligned} \mathbf{Proof.As} \\ SD(K_n^{\psi}) &= \begin{bmatrix} 0 & 1 & 1 & \cdots & 1 & 1 \\ -1 & 0 & 1 & \cdots & 1 & 1 \\ -1 & -1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ -1 & -1 & -1 & -1 & \cdots & 0 & 1 \\ -1 & -1 & -1 & \cdots & -1 & 0 \end{bmatrix} \\ \\ |SD(K_n^{\psi}) - xI| &= \begin{bmatrix} -x & 1 & 1 & \cdots & 1 & 1 & 1 \\ -1 & -1 & -1 & \cdots & 1 & 1 & 1 \\ -1 & -1 & -x & \cdots & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\ -1 & -1 & -1 & \cdots & -x & 1 & 1 \\ -1 & -1 & -1 & \cdots & -x & 1 & 1 \\ -1 & -1 & -1 & \cdots & -x & 1 & 1 \\ -1 & -1 & -1 & \cdots & -x & 1 & 1 \\ -1 & -1 & -1 & \cdots & -1 & -x & 1 \\ -1 & -1 & -1 & \cdots & -1 & -x & 1 \\ -1 & -1 & -1 & \cdots & -1 & -1 & -x \\ \end{bmatrix} \\ \\ \\ By 1.2.P_{16} \text{ in [6],} \\ \begin{bmatrix} d_1 & b & b & \cdots & b & b \\ c & d_2 & b & \cdots & b & b \\ c & d_2 & b & \cdots & b & b \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ c & c & c & \cdots & c & d_n \end{bmatrix} \\ \\ \\ = \frac{bq(c) - cq(b)}{b - c} ifb \neq c, \\ \\ \text{where } q(t) = (d_1 - t)(d_2 - t) \cdots (d_n - t). \end{aligned}$$

Therefore,
$$|SD(K_n^{\psi}) - xl| = \frac{1q(-1)-(-1)q(1)}{1-(-1)}$$
 where
 $q(t) = (-x - t)(-x - t) \dots (-x - t)$
 $= (-1)^n(x + t)^n$
Therefore, $q(1) = (-1)^n(1 + x)^n$; $q(-1) = (-1)^n(x - 1)^n$.
Hence $|SD(K_n^{\psi}) - xl| = \frac{(-1)^n(x-1)^n+(-1)^n(x+1)^n}{2} = (1 - x)^n + (-1)^n(1 + x)^n$.
The eigen values of K_n^{ψ} are given by
 $|SD(K_n^{\psi}) - xl| = 0$
 $(-1)^n(x - 1)^n + (-1)^n(x + 1)^n = 0$.
Therefore $\frac{(x-1)^n}{(x+1)^n} = -1 = \cos\pi + i\sin\pi$
 $= \cos(2k + 1)\pi + i\sin(2k + 1)\pi; k = 0, 1, 2, \dots, (n - 1)$
 $\frac{x-1}{x+1} = \cos(2k + 1)\frac{\pi}{n} + i\sin(2k + 1)\frac{\pi}{n};$
 $k = 0, 1, 2, \dots, (n - 1)$
 $= e^{i(2k+1)\frac{\pi}{n}}; k = 0, 1, 2, \dots, (n - 1)$
 $x = \frac{1+e^{i(2k+1)\frac{\pi}{n}}}{1-e^{i(2k+1)\frac{\pi}{n}}}; k = 0, 1, 2, \dots, (n - 1)$
 $= \frac{2i\sin(2k+1)\frac{\pi}{n}}{2-2\cos(2k+1)\frac{\pi}{2n}}$
 $= i\cot(2k + 1)\frac{\pi}{2n}; k = 0, 1, 2, \dots, (n - 1)$
Hence the skew distance eigen values of K_n^{ψ} are
 $i\cot(\frac{\pi}{2n}, i\cot(\frac{5\pi}{2n}, \dots, i\cot(\frac{(2n-1)\pi}{2n}).$
Therefore

$$E_{SD}(K_n^{\psi}) = \left| i \cot \frac{\pi}{2n} \right| + \left| i \cot \frac{3\pi}{2n} \right| + \dots \left| i \cot \frac{(2n-1)\pi}{2n} \right|$$
$$= \cot \frac{\pi}{2n} + \cot \frac{3\pi}{2n} + \dots + \cot \frac{(2n-1)\pi}{2n}$$
$$= \sum_{k=1}^n \cot(2k+1)\frac{\pi}{2n}.$$

Example 3.11 *Here is an infinite family with the property that deleting any edge will decrease the skew distance energy.*

By theorem 3.10 [5], $E_{SD}(ST_n^{\sigma}) = 2\sqrt{(n-1)}$, $(n \ge 4)$. Consider the oriented graph $ST_n^{\sigma} \setminus (1, n)$. As $|SD(ST_n^{\sigma} \setminus (1, n)) - xI| = x^n + (n-2)x^{n-2}$, the skew distance eigen values of $ST_n^{\sigma} \setminus (1, n)$ are $+\sqrt{(n-2)i}$, $-\sqrt{(n-2)i}$ and 0 occur in (n-2) times.

Therefore $E_{SD}(ST_n^{\sigma} \setminus (1,2)) = 2\sqrt{(n-2)} < 2\sqrt{(n-1)} = E_{SD}(ST_n^{\sigma}).$

Let K_n^{ψ} be the oriented complete graph on *n* vertices with the orientations of all the arcs go from low labels to high labels.

100015.								
Conside	er the o	riented g	raph K_n	^ψ \{(1,2)}. A	S	. .	
		(2)) = (2)	0 0	1	. 1	•••	1 1	
				1	1	•••		
CD (V	ψι (1	2))) _		1 (•••		
$SD(K_1$	$n' \setminus \{(1, \dots, n') \in \mathbb{N}\}$,2)}) =	-1 -	1 -	-1 0	•••		
				:	:		: : 0 1	
			-1 - 1	1 -	-1 -1 1 1	•••	$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$	
$ SD(K_n) $	ψ \ s(1	2) <u>)</u> – <i>r</i>		1 -	-1 -1	•••	-1 04	
$J^{D}(\mathbf{n}_n)$		ہ (زرے —ا	x = 0	1	1	1	1 1	
		0	-x	1	1	··· 1	1	
		_	1 -1	-x	1	··· 1	1	
		= -	1 -1	-1	-x	1	1	
		:	:	:	:	··· :	:	
		_	1 -1	-1	-1	··· –›	τ 1	
		I_	1 -1	-1	-1	··· -1	-x	
Using t	the elen	nentary 1	ow oper	atior	is,			
$\kappa_i \rightarrow \kappa_i$	$i - \kappa_{i-}$	$_1, \forall \iota = r$	l, n - 1,	3,	2, we ge	t		
$ SD(K_n$	$\psi \in \{(1, 2)\}$	(2)) - x						
$ ^{-x}$	0	1	1		1		1 0 0 \vdots 0 $-x-1$ $x-1$	1
x	-x	0	0		0		0	0
	x - 1	-x - 1	1 0	1	0		0	0
$= \begin{bmatrix} 0 \\ \cdot \end{bmatrix}$	0	$\frac{x-1}{\cdot}$	-x	- 1	0		0	0 :
:	:	:	:		•••• :	vr 1	:	: 0
0	0	0	0		···· —	x - 1	$-\gamma - 1$	0
0	0	0	0		0	- 1	$-\lambda - 1$	-x - 1
Using t	the elen	nentary o	column o	opera	tions.		$\chi = 1$	$-\lambda - 1$
$C_i \rightarrow C_i$	$-C_{i-1}$	$,\forall j=n$	n - 1	3,2	2, we get	-		
	the con-	222	71					
I = x	x	1	0		0	0	0 1	
x	-2x	x	0		0	0	0	
-1	x	-2x	<i>x</i> + 1		0	0	0	
0	0	<i>x</i> – 1	-2x		0	0	0	
= :	:	÷	÷		:	:	:	
0	0	$ 2) \}) - x \\ 1 \\ x \\ -2x \\ x - 1 \\ \vdots \\ 0 \\ 0 \\ 0 0 $	0		-2x	<i>x</i> + 1	0	
0	0	0	0		x - 1	-2x	x + 1	
10	0	0	0		0	x - 1	-2x I	
							1049	

 $|SD(K_n^{\psi}\{(1,2)\}) - xI| = \left| \begin{vmatrix} -x & x & 1 \\ x & -2x & x \\ -1 & x & -2x \end{vmatrix} \begin{vmatrix} -x & x & -1 & 0 & \cdots & 0 & 0 & 0 \\ x & -1 & -2x & x + 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -2x & x + 1 & 0 \\ 0 & 0 & 0 & \cdots & x - 1 & -2x & x + 1 \\ 0 & 0 & 0 & \cdots & 0 & x - 1 & -2x \end{vmatrix} = \begin{pmatrix} x^n + \frac{(n-2)(n+1)}{2!} x^{n-2} \\ + \frac{(n-2)(n-3)(n-4)(n+3)}{4!} x^{n-4} + \cdots \\ + \frac{(n-2)(n-3)(2n-5)}{3!} x^4 + \frac{2n-3}{1!} x^2 & \text{if n is even} \\ + \frac{(n-2)(n-3)(2n-5)}{3!} x^4 + \frac{2n-3}{1!} x^2 & \text{if n is even} \\ -x^n - \frac{(n-2)(n+1)}{2!} x^{n-2} \\ -x^n - \frac{(n-2)(n+1)}{2!} x^{n-2} \\ + \frac{(n-2)(n-3)(2n-5)}{2!} x^n + \frac{2n-3}{1!} x^2 & \text{if n is even} \\ -x^n - \frac{(n-2)(n+1)}{2!} x^{n-2} \\ -x^n - \frac{(n-2)(n+1)}{2!} x^{n-2} \\ + \frac{(n-2)(n-3)(2n-5)}{2!} x^n + \frac{2n-3}{1!} x^2 & \text{if n is even} \\ -x^n - \frac{(n-2)(n+1)}{2!} x^{n-2} \\ + \frac{(n-2)(n-3)(2n-5)}{2!} x^n + \frac{2n-3}{1!} x^n + \frac{2n-3}{1!} x^n \\ -x^n - \frac{(n-2)(n+1)}{2!} x^{n-2} \\ + \frac{(n-2)(n-3)(2n-5)}{2!} x^n + \frac{2n-3}{1!} x^n + \frac{2n-3}{1!} x^n \\ + \frac{(n-2)(n-3)(2n-5)}{2!} x^n + \frac{2n-3}{1!} x^n + \frac{2n-3}{1!} x^n \\ + \frac{(n-2)(n-3)(2n-5)}{2!} x^n + \frac{2n-3}{1!} x^n + \frac{2n-3}{1!} x^n \\ + \frac{(n-2)(n-3)(2n-5)}{2!} x^n + \frac{2n-3}{1!} x^n + \frac{2n-3}{1!} x^n + \frac{2n-3}{1!} x^n \\ + \frac{(n-2)(n-3)(2n-5)}{2!} x^n + \frac{2n-3}{1!} x^n + \frac{2n-3$ $\begin{vmatrix} + & \\ -x & x & 1 \\ x & -2x & x \\ 0 & 0 & x-1 \end{vmatrix} (-1)^{1+2+4+1+2+3} \\ \begin{vmatrix} x+1 & 0 & 0 & \cdots & 0 & 0 \\ x-1 & -2x & x+1 & \cdots & 0 & 0 & 0 \\ 0 & x-1 & -2x & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -2x & x+1 & 0 \\ 0 & 0 & 0 & \cdots & x-1 & -2x & x+1 \\ 0 & 0 & 0 & \cdots & 0 & x-1 & -2x \end{vmatrix}$ $\begin{vmatrix} -x & x \\ x & -2x \\ 0 & 0 \\ x+1 & 0 \\ \cdots & 1 \end{vmatrix}$

By 0.9.10[6] the determinant of the Tridiagonal matrices,

$$= \begin{cases} (-x^3 - 2x)[(-1)]^{n-3}[(n-2)c_1x^{n-3} + ((n-2)c_3x^{n-6} + \dots + (n-3)c_{n-3}x]] + ((-1)(x^3 - x^2)(x+1)(-1)^{n-4}[(n-3)c_1x^{n-4} + ((n-3)c_1x^{n-6} + \dots + (n-3)c_{n-3}x]] + ((n-2)c_1x^{n-3} + ((n-2)c_2x^{n-5} + \dots + (n-3)c_{n-2}x] + ((-1)(x^3 - x^2)(x+1)(-1)^{n-4}[(n-3)c_1x^{n-4} + ((n-3)c_1x^{n-4} + ((n-3)c_1x^{n-4} + ((n-3)c_1x^{n-5} + \dots + ((n-3)c_1x^{n-5} + ((n-3)c_1x^{n-5} + \dots + ((n-3)c_1x^{n-4} + ((n-3)c_1x^{n-4} + ((n-3)c_1x^{n-5} + \dots + ((n-3)c_1x^{n-4} + \dots + ((n-3)c_1x^{n-2} + ((n-2)c_1x^{n-4} + \dots + ((n-3)c_1x^{n-4} + ((n-3)c_1x^{n-4} + \dots + ($$

Using Laplace's expansion method

$$-x^{n} - \frac{(n-2)(n+1)}{2!}x^{n-2} + \frac{(n-2)(n-3)(n-4)(n+3)}{4!}x^{n-4} + \cdots$$

+ [-(n-2)(n-2)x^{3}] - 2xifnisodd

Theorem 3.12 The skew distance spectrum of $K_{m,n}^{\sigma}$, σ - a canonical orientation of $K_{m,n}$ is

$$\begin{bmatrix} 1 & m+n-2 & 1 \\ -\sqrt{mni} & 0 & +\sqrt{mni} \end{bmatrix}$$

and hence
$$E_{SD}(K_{m,n}^{\sigma}) = 2\sqrt{mn}$$

$$\begin{split} |SD(K_{m,n}^{n}) - xl| & |SD(K_{m,n}^{n}(1, n+1)) - xl| \\ &= (-1)^{m} x^{m} \Big|_{x}^{-\frac{x}{n} - 2x} \cdots - x - x - x - x \\ &= (-1)^{m} x^{m} \Big|_{x}^{-\frac{x}{n} - x} \cdots - x - 2x - x - x \\ &= x - x - x - 2x - x - x - x - x \\ &= x - x - x - x - 2x - x - x - x - x \\ &= x - x - x - x - x - x - x - x \\ &= (-1)^{m} x^{m} x^{n} \Big|_{x}^{-\frac{1}{n} - x} \cdots - x - x - x - x \\ &= (-1)^{m} x^{m} x^{n} \Big|_{x}^{-\frac{1}{n} - x - 1} - 1 - 1 \\ &= (-1)^{m} x^{m} x^{n} \Big|_{x}^{-\frac{1}{n} - x - 1} - 1 - 1 \\ &= (-1)^{m} x^{mn} x^{n} \Big|_{x}^{-\frac{1}{n} - 1} - 1 - 1 - 1 \\ &= (-1)^{m} x^{mn} x^{n} \Big|_{x}^{-\frac{1}{n} - 1} - 1 - 1 - 1 \\ &= (-1)^{m} x^{mn} x^{n} \Big|_{x}^{-\frac{1}{n} - 1} - 1 - 1 \\ &= (-1)^{m} x^{mn} x^{n} \Big|_{x}^{-\frac{1}{n} - 1} - 1 - 1 \\ &= (-1)^{m} x^{mn} x^{n} \Big|_{x}^{-\frac{1}{n} - 1} - 1 - 1 \\ &= (-1)^{m} x^{mn} x^{n} \Big|_{x}^{-\frac{1}{n} - 1} - 1 - 1 \\ &= (-1)^{m} x^{mn} x^{n} \Big|_{x}^{-\frac{1}{n} - 1} - 1 - 1 \\ &= (-1)^{m} x^{mn} x^{n} \Big|_{x}^{-\frac{1}{n} - 1} - 1 - 1 \\ &= (-1)^{m} x^{mn} x^{n} \Big|_{x}^{-\frac{1}{n} - 1} - 1 - 1 \\ &= (-1)^{m} x^{mn} x^{n} \Big|_{x}^{-\frac{1}{n} - 1} - 1 - 1 \\ &= (-1)^{m} x^{mn} x^{n} \Big|_{x}^{-\frac{1}{n} - 1} - 1 - 1 \\ &= (-1)^{mn} x^{mn} x^{n} + (-1)^{m+n} x^{m} x^{n} \\ &= (-1)^{mn} x^{mn} x^{n} + (-1)^{m+n} x^{mn} x^{n} \\ &= (-1)^{mn} x^{mn} x^{n} + (-1)^{m+n} x^{mn} x^{n} \\ &= (-1)^{mn} x^{mn} x^{n} + (-1)^{m+n} x^{mn} x^{n} \\ &= (-1)^{mn} x^{mn} x^{n} + (-1)^{m+n} x^{mn} x^{n} \\ &= (-1)^{mn} x^{mn} x^{n} + (-1)^{m+n} x^{mn} x^{n} \\ &= (-1)^{mn} x^{mn} x^{n} + (-1)^{m+n} x^{mn} x^{n} \\ &= (-1)^{mn} x^{mn} x^{n} + (-1)^{m+n} x^{mn} x^{n} \\ &= (-1)^{mn} x^{mn} x^{n} + (-1)^{m+n} x^{mn} x^{n} \\ &= (-1)^{mn} x^{mn} x^{mn} + (-1)^{m+n} x^{mn} x^{n} \\ &= (-1)^{mn} x^{mn} x^{mn} + (-1)^{m+n} x^{mn} x^{n} \\ &= (-1)^{mn} x^{mn} x^{n} + (-1)^{m+n} x^{mn} x^{n} \\ &= (-1)^{mn} x^{mn} x^{n} + (-1)^{m+n} x^{mn} x^{n} \\ &= (-1)^{mn} x^{mn} x^{n} + (-1)^{m+n} x^{mn} x^{n} \\ &= (-1)^{mn} x^{mn} x^{n} = (-1)^{mn} x^{mn} x^{n} \\ &= (-1)^{mn} x^{mn} x^{n} = (-1)^{mn} x^{mn} x^{n} \\ &= (-1)^{mn} x^{mn} x^{n} = (-1)^{mn} x^{mn} x^{n} \\ &= (-1)^{mn} x$$

 $E_{SD}(K_{m,n}^{\sigma}) = \sqrt{mn} + \sqrt{mn} = 2\sqrt{mn}.$

Corollary 3.13 As $E_{SD}(K_{m,n}^{\sigma}) = 2\sqrt{mn}, \quad E_{SD}(K_{n,n}^{\sigma}) = 2\sqrt{nn} = 2n.$

Example 3.14 *Here is an infinite family with the property that deleting any edge will increase the skew distance energy.*

Consider the oriented graph $K_{n,n}^{\sigma}$ with a canonical orientation σ . Delete an edge (1, (n + 1)) from $K_{n,n}^{\sigma}$, the skew distance characteristic equation is

 $\int_{n \times n} A_{n \times n} A_{11} \text{ commutes with } A_{12}, |SD(K_{n,n}^{\sigma} \setminus (1, n + 1)) - xI| = |A_{11}A_{22} - A_{21}A_{12}|. \text{ Therefore,}$

$$|SD(K_{n,n}^{\sigma} \setminus (1, n + 1)) - xI|$$

$$= \begin{vmatrix} x^{2} + (n - 1) & (n - 1) & (n - 1) & \cdots & (n - 1) & (n - 1) \\ (n - 1) & x^{2} + n & n & \cdots & n & n \\ (n - 1) & n & x^{2} + n \cdots & n & n \\ \vdots & & & & \vdots \\ (n - 1) & n & n & \cdots & n & x^{2} + n \end{vmatrix}$$

Using the elementary row operations,

Using the elementary column operations,

∀, n

$C_n \rightarrow C_n - C_{n-1}$	$_1; C_{n-1} \rightarrow 0$	$C_{n-1} - $	C_{n-2}	$c_2, \cdots C_2$	$\rightarrow C_2$ -	$-C_1$ we
get	2					
$x^{2} + (n-1)$				0	0	0
$-x^2$	$2x^2 + 1$	$-x^{2}$		0	0	0
0	$-x^2$	$2x^2$		0	0	0
:						:
0	0	0		$2x^{2}$	$-x^{2}$	
0	0	0		$-x^2$	$2x^{2}$	$-x^2$
	0	0		0	$-x^2$	$2x^2$

Using Laplace's expansion method

$$\begin{split} |SD(K_{n,n}^{\sigma} \setminus (1, n + 1)) - xI| &= \\ |x^{2} + (n - 1) - x^{2}| \\ -x^{2} & 2x^{2} + 1| \\ + \begin{vmatrix} x^{2} + (n - 1) & -x^{2} \\ 0 & 0 & \cdots & -x^{2} & 2x^{2} \end{vmatrix} \\ &+ \begin{vmatrix} x^{2} + (n - 1) & -x^{2} \\ 0 & -x^{2} \end{vmatrix} \\ \times (-1)^{1+3+1+2} \begin{vmatrix} -x^{2} & 0 & 0 & \cdots & 0 & 0 \\ -x^{2} & 2x^{2} & -x^{2} & \cdots & 0 & 0 \\ -x^{2} & 2x^{2} & -x^{2} & \cdots & 0 & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & \cdots & 2x^{2} & -x^{2} \\ 0 & 0 & 0 & \cdots & -x^{2} & 2x^{2} \end{vmatrix} \\ &= [x^{4} + (2n - 1)x^{2} + (n - 1)](n - 1)x^{2(n - 2)} \\ &+ (-x)^{2}(x^{2} + (n - 1))(-1)^{7}(-x)^{2} \end{split}$$

$$= (n-1)x^{2n-4} + (n-1)(2n-1)x^{2n-4}x^{2} + (n-1)(n - 1)x^{2n-4} - (x^{6} + (n-1)x^{4})(n - 2)x^{2n-6}$$

$$= (n-1)x^{2n} + (n-1)(2n-1)x^{2n-2} + (n-1)(n - 1)x^{2n-4} - (n-2)x^{2n} - (n-1)(n - 2)x^{2n-2}$$

$$= [(n-1)x^{2n} - (n-2)] + [(n-1)(2n-1) - (n - 1)(n-2)]x^{2n-2} + [(n-1)(n - 1)]x^{2n-4}$$

$$= x^{2n} + (n^{2} - 1)x^{2n-2} + (n-1)^{2}x^{2n-4}.$$

The skew distance eigen values of $K_{n,n}^{\sigma} \setminus (1, n + 1)$ are given by

$$\begin{aligned} x^{2n} + (n^2 - 1)x^{2n-2} + (n-1)^2x^{2n-4} &= 0\\ x^{2n-4}[x^4 + (n^2 - 1)x^2 + (n-1)^2] &= 0\\ x &= 0 \quad (2n-4) \quad times\&x^4 + (n^2 - 1)x^2 + (n-1)^2\\ &= 0 \quad forn \geq 3\\ x &= 0 \quad (2n-4) \quad times\&x^4 + (n+1)(n-1)x^2 + (n\\ &-1)(n-1) &= 0 \quad forn \geq 3\\ andx^4 + (n+1)x^2 + (n-1) &= 0 \quad forn = 2 \end{aligned}$$

Put $t = x^2$ in $x^4 + (n+1)(n-1)x^2 + (n-1)^2 = 0$, we get $t^2 + (n+1)(n-1)t + (n-1)^2 = 0$. Therefore

$$t = \frac{-(n^2 - 1)t + (n - 1)^2}{2} = 0.$$
 Therefore

$$t = \frac{-(n^2 - 1)\pm\sqrt{(n^2 - 1) - 4(n - 1)^2}}{2}$$

$$= \frac{-(n^2 - 1)\pm\sqrt{n^4 + 1 - 2n^2 - 4n^2 - 4 + 8n}}{2}$$

$$i. ex^2 = \frac{-(n^2 - 1)\pm\sqrt{n^4 - 6n^2 - 4 + 8n - 3}}{2}$$

$$= \frac{-(n^2 - 1)\pm(n - 1)\sqrt{n^2 + 2n - 3}}{2}$$

As $(n^2 - 1) \ge (n - 1)\sqrt{n^2 + 2n - 3}$ and $-(n^2 - 1)$ is negative, $\frac{-(n^2 - 1)\pm(n-1)\sqrt{n^2 + 2n - 3}}{2}$ is negative. Therefore

$$x = \pm \left[\frac{-(n^2 - 1) \pm (n - 1)\sqrt{n^2 + 2n - 3}}{2} \right]^{\frac{1}{2}}$$

$$= \pm \left[\frac{(n^2 - 1) \mp (n - 1)\sqrt{n^2 + 2n - 3}}{2}\right]^{\frac{1}{2}} i$$

Hence

 $E_{SD}[K_{n,n}^{\sigma} \setminus (1, n+1)] = 2(n^2 - 1) > 2n = E_{SD}(K_{n,n}^{\sigma})$

Definition 3.15 A regular graph on 2n vertices of the degree 2n - 2 is called a cocktail party graph and is denoted by CP(n). $CP(n)^{\psi}$ is an oriented cocktail party graph on 2n vertices with the orientations of all the arcs go from low labels to high labels.

Theorem 3.16 Let K_n^{ψ} be the oriented complete graph on n vertices with the orientations of all the arcs go from low labels to high labels. Let $CP(n)^{\psi}$ be the oriented cocktail party graph on 2n vertices with the orientations of all the arcs go from low labels to high labels. Then $E_{SD}[CP(n)^{\psi}] = 2E_{SD}[K_n^{\psi}]$

Proof.

$$|SD[CP(n)^{\psi}] - xI|$$

$$= \begin{bmatrix} -x & 1 & 1 & \cdots & 1 & 0 & 1 & 1 & \cdots & 1 \\ -1 & -x & 1 & \cdots & 1 & -1 & 0 & 1 & \cdots & 1 \\ -1 & -1 & -x & \cdots & 1 & -1 & -1 & 0 & \cdots & 1 \\ \vdots & \vdots \\ -1 & -1 & -1 & \cdots & -x & -1 & -1 & -1 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 1 & -x & 1 & 1 & \cdots & 1 \\ -1 & 0 & 1 & \cdots & 1 & -1 & -x & 1 & \cdots & 1 \\ -1 & -1 & 0 & \cdots & 1 & -1 & -1 & -x & \cdots & 1 \\ \vdots & & & \vdots & \vdots & & & \vdots \\ -1 & -1 & -1 & \cdots & 0 & -1 & -1 & -1 & \cdots & -x \end{bmatrix}$$

$$= \begin{bmatrix} A & B \\ B & A \end{bmatrix}$$

where
$$A = \begin{bmatrix} -x & 1 & 1 & \cdots & 1 \\ -1 & -x & 1 & \cdots & 1 \\ -1 & -1 & -x & \cdots & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ -1 & -1 & -1 & \cdots & -x \end{bmatrix} and$$
$$B = \begin{bmatrix} 0 & 1 & 1 & \cdots & 1 \\ -1 & 0 & 1 & \cdots & 1 \\ -1 & -1 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ -1 & -1 & -1 & \cdots & 0 \end{bmatrix}.$$

As $(i, j)^{th}$ entry of $AB = (i, j)^{th}$ entry of BA = -x + 2j - 2i - n, AB = BA. Therefore

$$|SD[CP(n)^{\psi}] - xI| = \begin{bmatrix} A & B \\ B & A \end{bmatrix} = |A^2 - B^2|.$$

Now, A²

$$= \begin{bmatrix} x^2 - (n-1) & -2x - (n-2) & \cdots & -2x + (n-4) & -2x + (n-4) \\ 2x - (n-2) & x^2 - (n-1) & \cdots & -2x + (n-6) & -2x + (n-2) \\ 2x - (n-4) & 2x - (n-2) & \cdots & -2x + (n-8) & -2x + (n-2) \\ \vdots & & \vdots \\ 2x + (n-2) & 2x + (n-4) & \cdots & 2x - (n-2) & x^2 - (n-2) \end{bmatrix}$$

 B^2

$$= \begin{bmatrix} -(n-1) & -(n-2) & -(n-4) & \cdots & (n-4) & (n-2) \\ -(n-2) & -(n-1) & -(n-2) & \cdots & (n-6) & (n-4) \\ -(n-4) & -(n-2) & -(n-1) & \cdots & (n-8) & (n-6) \\ \vdots & & \vdots \\ (n-2) & (n-4) & (n-6) & \cdots & -(n-2) & -(n-1) \end{bmatrix}$$

Therefore

2

=

$$|SD[CP(n)^{\psi}] - xI| = |A^2 - B^2|$$

$$= \begin{vmatrix} x^{2} & -2x & -2x & \cdots & -2x & -2x \\ 2x & x^{2} & 2x & \cdots & -2x & -2x \\ 2x & 2x & x^{2} & \cdots & -2x & -2x \\ \vdots & & & \vdots \\ 2x & 2x & 2x & 2x & \cdots & 2x & x^{2} \end{vmatrix}$$
$$= x^{n} \begin{vmatrix} x & -2 & -2 & \cdots & -2 & -2 \\ 2 & x & 2 & \cdots & -2 & -2 \\ 2 & 2 & x & \cdots & -2 & -2 \\ \vdots & & & & \vdots \\ 2 & 2 & 2 & \cdots & 2 & x \end{vmatrix}$$

By 1.2 *P*₁₆ in [6],

$$|SD[CP(n)^{\psi}] - xI| = x^n \left[\frac{(x-2)^n + (x+2)^n}{2} \right]$$

The skew distance eigen values of $CP(n)^{\psi}$ are given by
$$x^n \left[\frac{(x-2)^n + (x+2)^n}{2} \right] = 0$$

 $\Rightarrow x = 0 \quad (n \quad \text{times}) \quad \text{and} \quad (x - 2)^n + (x + 2)^n = 0.$ Thereforet the skew distance eigen values of $CP(n)^{\psi}$ are $0, 0, \dots, 0 \quad (n \quad \text{times}) \quad 2icot \frac{\pi}{2n}, 2icot \frac{3\pi}{2n}, \dots, 2icot \frac{2n-1}{2n}\pi.$ Hence

$$\begin{split} E_{SD}[CP(n)^{\psi}] &= 2\left[\cot\frac{\pi}{2n} + \cot\frac{3\pi}{2n} + \cdots + \cot\frac{2n-1}{2n}\pi\right] \\ &= 2E_{SD}(K_n^{\psi}) \\ &= E_{SD}(K_n^{\psi} \bigoplus K_n^{\psi}). \end{split}$$

Example 3.17 Here is an infinite family with the property

that deleting all the edges in the cutset does not change the energy.

Consider $CP(n^{\psi})$, the oriented cocktail party graph on 2n vertices with the orientations of all the arcs go from low labels to high labels. Then $E_{SD}[CP(n)^{\psi} \setminus E] = 2E_{SD}(K_n^{\psi}) = E_{SD}(K_n^{\psi} \bigoplus K_n^{\psi})$, where *E* is the set of all edges in the cutset. Let $E = \{(u_i, v_j)/i = 1, 2, \dots, n, j = 1, 2, \dots, n, i \neq j\}$. Edges in *E* are oriented with the orientations of all the arcs go from low labels to high labels.

As *E* is the cutset in $CP(n)^{\psi}$,

$$CP(n)^{\psi} \setminus E = K_n^{\psi} \bigoplus K_n^{\psi}$$

$$\therefore E_{SD}(CP(n)^{\psi} \setminus E) = E_{SD}(K_n^{\psi} \bigoplus K_n^{\psi})$$

$$= 2E_{SD}(K_n^{\psi})$$

REFERENCES

- J.Day and W.So, Graph energy change due to edge deletion, *Linear Algebra Appl.*, 428 (2008), 2070-2078.
- [2] Laura Buggy, Amalia Culic, Katelyn Mccall and Duy Nguyen, The Energy of Graphs and Matrices.
- [3] V.Nikiforov, The energy of graphs and matrices, *Jurnal of Mathematical Analysis and Applications*, 326 (2007), 1472-1475.
- [4] Saieed Akbari, Ebrahim Ghorbaniand, Mohammed Reza Oboudi, Edge addition, Singular values and energy of graphs and matrices.
- [5] A. Wilson Baskar and M. Dhanasekaran, On the skew distance energy of a digraph. Proceedings of the National Conference on Present Scenarion in Graph Theory, PGST-2016, 90-107.
- [6] R.Horn and C.Johnson, Matrix Analysis, Cambridge University Press, 1989.